
NASA TECHNICAL

T t,

MEMORANDUM 104219

A PROCEDURE FOR UTILIZATION OF A

DAMAGE-DEPENDENT CONSTITUTIVE
MODEL FOR LAMINATED COMPOSITES

David C. Lo, David H. Allen, and
Charles E. Harris

FEBRUARY 1992

National Aeronautics and
Space Administration

LANGLEY RESEARCH CENTER

Hampton, Virginia 23665-5225

(_ASA-TM-104219) A PROCEDURE FOR

UTILIZATIqN OF A DAMAGE-DEPENDENT

CONSTITUTIVE MODEL FOR LAMINATED COMPOSITES

(NASA) 32 p CSCL lID

N92-25135

Uncles
G]/24 0078050





A Procedure for Utilization of a Damage-Dependent

Constitutive Model for Laminated Composites

David C. Lo

David H. Allen

Center for Mechanics of Composites

Texas A&M University

College Station, Texas 77843

and

Charles E. Harris

Mechanics of Materials Branch

NASA Langley Research Center

Hampton, VA 23665

Abstract

This paper describes the procedure for utilizing a damage dependent constitutive

model to predict progressive damage growth in laminated composites. In this model the

effects of the internal damage are represented by strain-like second order tensorial damage

variables and enter the analysis through damage dependent ply level and laminate level

constitutive equations. The growth of matrix cracks due to fatigue loading is predicted

by an experimentally based damage evolutionary relationship. This model is incorporated

into a computer code called FLAMSTR. This code is capable of predicting the constitutive

response and matrix crack damage accumulation in fatigue loaded laminated composites.

The structure and usage of FLAMSTR are presented along with sample input and output

files to assist the code user.

As an example problem, an analysis of crossply laminates subjected to two stage

fatigue loading has been conducted herein and the resulting damage accumulation and

stress redistribution have been examined to determine the effect of variations in fatigue

load amplitude applied during the first stage of the load history. It is found that the model

predicts a significant loading history effect on damage evolution.



Iutroduction

Laminated continuous fiber composites are increasingly being utilized in engineering

applications such as primary load bearing aircraft components. This is in part due to

the lower weight and higher specific stiffness obtained by using advanced composite ma-

terials. Unfortunately, laminated composite materials are susceptible to the development

of mlcrostructural damage when subjected to service loads. This damage includes ma-

trix cracking, delamination, fiber-matrix interface debonding, and fiber fracture. Each

microcrack is in itself relatively insignificant since most cracks are arrested at the fibers

or adjacent plies. However, the resulting redistribution of load to the surrounding re-

gions creates stress fields favorable to the initiation and propagation of additional damage.

Catastrophic failure is triggered when the remaining load paths are no longer able to sup-

port the load. In addition, the strength an_Stiffness of the material are degraded as a

result of the load redistribution and the decrease in load paths during the accumulation of

the subcritica] damage. Since the initiation and accumulation of this subcritical damage

are highly dependent on the stress state within the material, analysis of the structural

response and service life must account for this stress redistribution.

Due to the multitude of microcracks often observed in laminated composites, it may

not be practical to model each flaw explicitly. An alternative approach represents the dis-

tributed damage by volume averaged quantities known as internal state variables (ISV).

These quantities may describe the average physical attributes of the distributed damage

_)r they might describe the effects of the distributed damage on the material response. In

the current approach the damaged material volume is modeled as a continuous domain

with altered properties. Thus, although the microcracks in the representative volume ele-

ment (RVE) are treated as internal boundaries, the global structural problem is treated as

simply connected with spatially variable reduced stiffness obtained from a micromechan-

its solution for the RVE. As a result, the global problem is made more computationally

tractable. Even though the ply level stresses obtained from this approach are locally av-

eraged quantities, the model predictions are in qualitative agreement with experimental

results. This approach, call damage mechanics, is suitable for damage that is small in size

relative to the scale of the structure being analyzed and is spatially homogeneous within

the RVE. Although it has been applied to the study of a Wide range of phenomena from

microcracking to chemical and radiation damage in engineering materials, only recently

has it been applied to matrix cracking in laminated composites [1-9].

This report describes how to perform an analysis using this approach. The model is

formulated for matrix cracking and delarnination damage in laminated polymeric compos-

-g.
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ites with a brittle matrix. At the present time, a damage evolutionary relationship for

fatigue induced matrix cracking has been implemented into the lamination computer code,

FLAMSTR. This code is used to demonstrate some of the effects that the loading history

has on the accumulation of matrix cracking. The ew)lutionary relationships for delamina-

tion damage are currently under development and will be incorporated into the code at a

future time. A brief description of this model will be presented. Detailed development of

this model can be found in the published literature [5,6,10-14].

Model Description

In the proposed model, the effects of the matrix cracks are introduced into the ply

level constitutive equations as follows [15]:

} : [QI{*L,, M- L,,} (1)

where rrL,, are the locally averaged components of stress, [Q] is the ply level transformed

stiffness matrix, and ":l.,, are the locally averaged components of strain, a ML,_are the

components of the strain-like internal state variable for matrix cracking and are defined

by

M t f_aL, J = _ umjdS (2)

where VL is the volume of an arbitrarily chosen representative volume of ply thickness which

is sufficiently large that _,M do not depend on Vt, ui are the crack opening displacements,
a t]

and ,j are the components of the vector normal to the crack face. It is assumed in

the current model that _*22"at,the internal state variable representing the mode I matrix

crack opening, is the only nonzero component. For a uniaxially loaded medium containing

alternating 0 ° and 90" plies, a22,M has been found from a micromechanics solution to be

related to the far field normal force and crack spacing as follows [15]:

P

M 2t

c_22 - _' C (3)
64_ 2222

w here

"¢_ "¢' I (4)
= ,,-_---" ('2222(2m-- 1)2(2n- 1) 2 + C1212 :_(2n - 1) 4

-:| =

p is the hwce per unit length applied normal to the fibers and 2t" and 2fi are the layer

thickness and crack spacing, respectively. ('2222 is the modulus in the direction transverse

to the fibers and Ct212 is the inplane shear modulus. Both moduli are the undamaged

properties.
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Equation (3) requires that the matrix crack spacing be known in each ply of the

laminate. Since it is usually necessary to predict the damage accumulation and response

for a given loading history, damage evolutionary relationships must be utilized to determine

the values of the internal state variables. The authors have used the following relationship

M in each ply during fatigue loadingfor the rate of change of the internal state variable a22

conditions and when the available strain energy release rate is greater than some critical

value Go, [16],

- G (5)
dS

where -2g- describes the change in the internal state variable for a given change in the

crack surface areas,/,' and h are material parameters, and N is the number of load cycles.

G is the damage dependent strain energy release rate for the ply of interest and is calculated

from the following equation,

where I'L is the local volume. Interactions with the adjacent plies will result in ply strains,

eL, which are affected by the strains in adjacent plies. Thus, the energy release rate, G.

in each ply will be implicitly reflected in the calculation of the ply level response, so that

equation (5) is not restricted to a particular laminate stacking sequence. Utilizing equation

(6) in equation (5) and integrating the result in each ply over time thus gives the current

damage state in each ply for any fatigue load history.

The ply level strains are defined as follows:

= E °

:TLyy _ _o- :L. - (8)

_0= "-L:: (9)

_o - r_L_. (10)Y-L_: _ :L_:

.O s

:ZL_: = -L_: - _L.: (11) i

where -_ and t_L are the midplane strains and curvatures, respectively. The aforementioned

ply strains are then substituted into equation (1) to produce the ply level stresses.
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Damage dependent lamination equations are cd)tained by integrating these ply stresses

through the thickness of the laminate ill]. Next, the stiffness matrix in the laminate

equation is inverted to produce:

t,'t. B M g :w (13)

where [.11, [B], and ID[ are, respectively, the undamaged laminate extensional, coupling,

and bending stiffness matrices. They are defined by [17!,

tl

[A] = Z[QIk(-_" z_..,) (14)
/,,=1

v?

[B] --:_ [Q]_.(:_.---2/,,-1 )
k=l

_Tr

-- --- k-l)

k== 1

(15)

(16)

where [Qi_' is the elastic m,)dulus matrix fi)r the /,.,h ply in laminate coordinates. N are

the comp_ments of the resultant f(wce per unit length and M are the components of the

resultant m,,ments per unit length; {f.w} and {g M} represent the contribution to the

resultant fi,rces and moments from matrix cracking and are calculated from,

fi

_f,,t} = _ _ [Q]_.(._.__:_,_,){ M}t, (17)
k=l

1 _ ){ .,,}_ (18)
k=l

where {_vat }t. contains the matrix cracking internal state variables for the k ta ply. Thus

given the forces, N, and moments, M, as well as the damage variables in each ply, equation

(13) can bc utilized to calculate the midsurface strains, s_, and curvature, xt.

Program Description

Program Structure

The damage dependent lamination model has been coded into the FORTRAN program

FLAMSTR following the algorithm shown in Figure 1. This program enables the analysis

of the stress-strain response and accumulation of matrix cracking at a material point in

a laminate subjected to fatigue loading. The program begins by reading in the laminate
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and material properties from a data file. The extensional, coupling, and bending stiffness

matrices, [.ll, [/3I, and [DI, respectively are calculated and then inverted for later use.

Next, the initial damage states for each ply and the growth law parameters are read into

the program. They can be determined if the initial crack spacing is known from equation

(3). The pr,_cedure for the determination of the damage evolution parameters can be

7"h,und in Appendix A. l really, the fatigue h:,ading history is read in. The constitutive

portion of tile program initiates with the calculation of the "damage induced" forces and

moments using equations (I 7) and (18), respectively. These quantities are combined with

the applied h_rces and moments to calculate the midplane strains and curvatures through

equation (13). The strains in each ply are then determined with equations (7) through

(12). Equation (1) is then used to calculate the damage dependent stresses in each ply

and the strain energy release rate is determined for each ply from equation (6) using the

nt in each ply is then obtained from equation (5) and theply stresses. The evolution of %2

damage state is updated. The above procedure is repeated for the desired number of load

history increments.

The computati_mal algorithm assumes that the rate of damage evolution is small

enough that the strain energy release rate can be considered to be constant during each

l.ad cycle. Often this condition leads to exponential overflow errors during the execution

,,f the computer code. The high sensitivity of the mode I matrix cracking ISV to the strain

energy release rate is due to the power law form of the damage evolutionary relationship.

To model this change in the strain energy release rate with the current algorithm, the load

cycles experiencing large changes in damage evolution are divided into subincrements for

calculation. This enables the strain energy release rate to reflect the damage accumulated

during the I,_ad cycle. This approach has produced satisfactory results. Subincrementation

has also been found t,, be necessary during the initial cycles of the fatigue load history

when the laminate goes from an undamaged to a damaged state and whenever the fatigue

load amplitude is increased.

Program Inputs

The execution of FLAMSTR requires the creation of two input data files. One of these

files is labeled datfll.d and contains two entries. The first entry is the name of the other

input file from which all the information required in the calculations are retrieved. On the

next line is the name of the data file in which the output will be stored. This output file

is created by the program during execution. The second input file contains information

about the stacking sequence, material properties, initial damage state, and the loading

history. The variables, listed in the order in which they should appear in the data file,
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along with their description are presented in the following list:

nplies

QLI, OLd,

Q1a, Qaa, Q_8

!flag

N., N Ny, a'_

Al,, Aly, ,'ff,_

t(i), tl, eta(i)

.z ,ha,1,(,, 2), ,,.zvh,,..,(i.s)

dpara, ]c, h

,el, hcf, ni.c

iproum, nsnbic

',jump, a'fa,"

Number of plies in laminate.

Components ,)f the transformed ply stiffness matrix.

Components of the transformed ply stiffness matrix.

Damage condition: 0 - no damage, 1 = matrix cracks.

Applied forces.

Applied moments.

Thickness and orientation (deg) of ply i. For i = 1, nplies.

Initial values _f the Mode I and Mode II matrix cracking ISV

for ply i. For i = 1, nplies.

Slope of the relationship between the far field normal stress

d,_ and growth law parameters.and

Initial cycle number; final cycle number; number of increments

taken to go from,,rito hcf; I .: nine. (ncf - nci).

Output results to datafile every iprnum increments. Number

of subincrements emph)yed during a change in the maximum

load.

Cycle number at which the maximum applied load is changed;

maximum applied toad factor. ( nci n jump .< ncf , set xfae

= l if applied load remains constant )

Note that. each line is read in a fl)rmat free manner. A sample set of input files can be

found in Appendix B.

Program Outputs

The output data file contains a listing of the input variables plus the program gen-

erated results. Due to the number of h_ad history increments involved in the analysis

of fatigue, _mly the results at presetected increments are stored in the output file. The

frequency at which the data is recorded is set by the variable iprnum in the input files. In-

formation stored consists of the load cycle number, the values of the matrix cracking ISV's
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in each ply, the midplane strains and curvatures, and the damage dependent strains and

stresses at tile outer fiber of each ply. The output file corresponding to the aforementioned

sample input files can also be found in Appendix B.

Sample Calculations

The m_del has been employed to simulate the damage dependent stress redistribution

and the accumulation of matrix cracks in a [0/902/0I_ laminate subjected to the uniaxial

loading histories shown in Figure 2. Each h,ad case consists of two load segments with

the latter at a maximum load of 600 lb/in..-k fatigue load ratio of 0.1 has been assumed

for both h,ad segments. Material properties fl_r AS4/3501-6 Graphite/Epoxy, as listed in

Table l, have been used in the calculations. The sample input and output FLAMSTR files

found in Appendix B correspond to load case I.

Figure 3 illustrates the dependence of the accumulation of matrix cracks on the max-

imum load amplitude. The damage caused by loading initially at a lower load amplitude,

cases I and II, causes ,_nly a minor effect on the final damage state as compared to load case

[II in which a maximum load of 600 lb/in is maintained during the entire load history.

However, when the initial fatigue load level is 800 lb/in (case IV) much of the damage

occurs during the initial fatigue cycles. Furthermore, even though only a minute amount

,,f damage accumulates during the second load segment, the amount of damage at the

completion _,f this fatigue load history is almost twice as much as the other three cases.

The decelerated growth ,,f matrix cracks during the second stage occurs when the spacing

between the matrix cracks no longer enables the transfer through shear of sufficient load

back to the ply to create additional matrix cracking. On the other hand, the negligible

accumulation of damage during the first stage of load in ease I, when the maximum load is

200 [b/in, indicates that the applied load is not sufficient to produce an appreciable amount

of damage. Thus, even though a critical value fi)r damage growth has not been specified

in the calculations, the damage evolution relationship shown by equation (5) behaves as if

a threshohl exists for damage growth. The accuracy of this predicted behavior, however,

requires further investigation.

The average axial stresses in the 90 ° plies of the crossply laminate are shown in

Figure 4. The plies experience a sharp decrease in axial stress upon the initiation of

matrix cracking. This is followed by a period of gradual decrease as further damage

accumulates. The axial ply stress then abruptly changes when the maximum load is

changed to 600 lb/in at the initiation of the second load segment. Since each case has

the same maximum fatigue load the corresponding axial stress serves as an indication of

the relative load carrying capability remaining in the 90 ° plies. The laminate retains a
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Table 1. Material Properties for AS4/3501-6

El I 20.04 Msi

E22 1.60 Msi

G12 0.70 Msi

u[2 0.26

tply 0.00505 i7_.

transformed ply stiffness components:

Q1L 20.29 Msi

Q12 0.43 ,'tlsi

Q22 1.61 Msi

Q13 0.43 Msi

Qaa 1.61 Msi

Q66 0.70 Msi

parameter for dod--s:
dpara 6.90 :< 10 -6

growth law parameters:
k 4.42

5 6.39

Jt
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similar amount of load carrying capability for the first three load cases.However,the load

carrying capability for load case IV is substantially reduced compared to the other cases.

This is in accordance with the amount of damage sustained for this load case.

The results presented illustrate the damage accumulation and stress redistribution oc-

curring within uniaxially fatigue loaded crossply laminates. As the load carrying capability

diminishes in the 90 ° plies, the surrounding 0 ° plies must assume a greater portion of the

applied load. The load transfer continues until the axial stress in the 0 ° plies exceeds the

strength of a fiber. Since the 0 ° plies are the primary load bearing member for crossply

iayups, laminate failure is probably triggered by this event. Although this example is a

relatively simplistic representation of the progressive failure process found in laminated

composites, it does demonstrate how this model can be employed to analyze this process.

The ability to model the damage dependent stress redistribution and damage accumulation

can be advantage, ms in the design and maintenance of laminated composites. By simulat-

ing the progressive failure of a laminate, potential damage modes and their locations can

be identified. The laminate can thus be redesigned to suppress or minimize the effects of

such damage.

The introduction of multiaxial loading and/or angle plies will promote the develop-

ment of mixed mode matrix cracking and delamination during the application of fatigue

loads. In addition, fiber breakage in one ply may not cause the unstable fracture of the

laminate. While this model possesses the capability to account for mixed mode matrix

cracking and delamination, relationships describing their evolution are necessary to analyze

their contribution in the progressive failure process. The present version of FLAMSTR

calculates only the mode I matrix crack contribution in each ply. This factor must be con-

sidered in the interpretation of the predicted results until this code is updated to account

for these conditions. To analyze laminated composite structures with spatially varying

stress fields this constitutive code has been incorporated into a finite element structural

analysis algorithm [18]. This finite element analysis code has been successfully used to

predict spatial variations of damage evolution in structural components such as a plate

with a circular cutout [19].

S Ullllnal'y

A computer code called FLAMSTR has been developed for the analysis of the pro-

gressive failure process in fatigue loaded laminated composites. This code utilizes volume

averaged internal state variables to describe the kinematics of matrix cracks. The effects

of the damage enter the analysis via the damage dependent laminate equations. Ply level

stresses obtained from the results of these equations are then used to predict the amount
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of mode I matrix crack growth. This procedure is repeated for each load cycle to simulate

the damage accumulation process.

This report serves as a user's guide for the constitutive code. Sample input and output

datafiles are ench,sed to assist in the usage of this computer code. A simulation of crossply

laminates subjected to two stage uniaxial fatigue load histories has been conducted to

illustrate the ability of the model to predict the path dependent damage accumulation and

stress redistributi,m in the laminate. Since the information generated from this analysis

can be used to construct the sequence of events leading to the failure of the laminate, it

has potential uses in the design of composite structures.
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Appendix A. Determination of Growth Law Parameters

The damage evolution parameters, _ k, and h, are unique to each material system
dS ,

and must be determined prior to the analysis. The term _ reflects the changes to

the internal state variable with respect to changes in the crack surfaces. If it is assumed

that the matrix crack surfaces are fiat and aligned perpendicular to the plane formed by

the ply, thereby permitting the description of the total crack surface area in terms of the

crack spacing, then -_ can be calculated analytically form equation (3). It was found,

for typical brittle graphite/epoxy material properties, that a22 exhibits an almost linear

relationship to the crack spacing at each far field load. Thus this analysis assumes the

slope, ds , to be constant for each far field load. Furthermore, equation (3) indicates that

,ts varies linearly with the far field load. It is the slope of the relationship between

and the far field load that is required by FLAMSTR. This variable is stored in the input

file under the named dpara.

The constants/_" and h in equation (5) must be determined from experimental data.

Since/_' and h are assumed to be parameters unique to each material system, the values

determined from one laminate stacking sequence and one loading condition should be valid

for all other cases. This has been shown for uniaxially fatigue loaded crossply laminates

with varying number of consecutive transverse plies and maximum fatigue stresses [20].

To evaluate /_"and h, a curve of the quantity _ Js_.xr ,7S,,_ versus the strain energy release

rate, C, must be generated for a particular stacking sequence and maximum fatigue stress.

Experimental data from uniaxially fatigue loaded crossply laminate are used because it can

be assumed that the matrix crack opening mode to be essentially mode I. Thus the ISV,

,at is sufficient in describing the damage state and the contributions from the other two_"f2 2,

opening mode d_) not have to be considered in the calculations. In addition, the transverse

plies should be grouped together in the laminate so that the damage evolution at a single

layer needs to be considered. Since most damage accumulation data are reported as crack

spacing or density at a particular point in the loading history, equation (3) is utilized to
M

M The resulting a22 versus load cycle, N, curveconvert this data to the form of the ISV, ct22.

serves as the starting point in this procedure. The following steps describe this process:

M
(1) _ at a point in the loading history is determined by taking the slope of the au2

AI
vs. N curve. This task can be facilitated if the _22 vs. N curve is fitted numerically

and the first derivative taken.

(2) Equation (3) is employed to calculate _dS at each data point. These will be used in

the determination of the strain energy release rate and growth law parameters.

(3) The strain energy release rate, G, is calculated using equation (6) where the height of

the local wdume, VL, is assumed to be equal to the thickness of the damaged layer.

M and the maximum applied fatigue stress are known, eL,j in equation (6) canSince t_22
be determined via equations (7) through (12). This is performed for each data point.

(4) N,)w ,iN is divided by the corresponding 5_._ so that the damage evolution law,
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equation (9), becomes

(A1)

With the left hand side of equation (A1) and the corresponding values of the strain

energy release rate, G, calculated at various points in the fatigue loading history, I¢ and

h can be determined by taking the natural log of equation (A1) and then employing

a linear regression procedure.

For the present model, k and h of AS4/3501-6 graphite/epoxy are determined from

damage accumulation data published by Chou, et al. [21]. The data employed is for

[02/902]s AS4/3501-6 laminates fatigue loaded at the maximum fatigue stress of 43 ksi

and a stress ratio of 0.1 . The parameters are determined to be

/_.= 4.42, h = 6.39. (,42)

This values are then used in the calculations involving the AS4/3501-6 graphite/epoxy

system. " "
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Appendix B. Sample Input and Output Files

Input datafile: datfll.d*

flnp.dat

ft2OO.d

Input datafile: flnp.dat*

6

20.29e6 0.433e6 1.61e6

0.433e6 1.61e6 0.695e6

1

200.0 0.0 0.0

0.0 0.0 0.0

0.00505 0.0

0.01010 90.0

0.00505 0.0

0.00505 0.0

0.01010 90.0

0.00505 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

6.9017e-6

0.0 10000.0

50O 2OO.O

5000.0 3.000

4.41613 6.388592

10000.0

nplit s

Q,,, Q12, Q2_

Q,3, Q3s, Q86

i flag

N_, Ny, N_

M_, lily, [tl_y

t(2), theta(2)

_(3),.,,:t,,.(3)
_(4),tt,_t.(4)
t(,_), the-t,,.(5)
t(6), th_.t.(6)
,,Ipl,o.,,( t, 2), ,,tpha,,,(t, s)
.zpt,0,,(2, 2), ,,,t_,ha.,(2, 8)
alpbam(3,2), alpha.,(3, 8)

alpham(4, 2),

alpham (5, 2),

alpbam(6, 2),

dpara, _', fi

alpham(4, 8)

alph am(5, 8)

alph am (6, 8)

,Tci, n el, nin c

iprnum, nsubic

,,jump, a:fac

* Italicized items are descriptions of the input variables and are not part of the data

file.
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Output datafile: ft2OO.d

i
t

|

i:

20

|

i
_z

r_



OUTPUT FOR 6 PLIES

THE C MATRIx IS

0.2029000E+OB 0.4330000E+06

0.4330000E÷06 0.16i0000E+07

0.1610000E+07

O.GgSOOOOE+O6

IFLAG = 1

THE APPLIED FORCE Ni ARE

0.2000000E+03 O.O000000E+O0 O.O000000E+O0

O.O000000E+O0 O.O000000E+O0

O.O000000E+O0

THE APPLIED MOMENT Mi ARE

O.O000000E+O0 O.O000000E+O0 O,O000000E+O0

O.O000000E+O0 O.O000000E+O0
O.O000000E+O0

PLY NO. T THETA

1 0.5050000E-02 O.O000000E+O0

2 0.1010000E-OI 0.9000000E+02

3 0,5050000E-02 O.O000000E+O0

4 0.5050000E-02 O.O000000E+O0

5 0.1010000E-01 0.9000000E+02

6 0.5050000E-02 O.O000000E+O0

DPARA = O.G901700E-05 XKI= 0.4416130E+01 XNI= 0,6388592E+O1

INITIAL CYCLE: O.O000000E+O0 FINAL CYCLE:

CYCLE INCREMENT: 0, I000000E+01

PRINT OUTPUT INCREMENT: 500

SUBINCREMENT CYCLES (RAMP UP): 0.2000000E+03

O.IO00000E+05

LOAD JUMP AT CYCLE: 0.5000000E+04 LOAD FACTOR: 0.3000000E+O1

CYCLE NUMBER 0.4990000E+03

PLY NO. ALPHAM2 ALPHAMB

1 O.1828431D-1B O.O000000O+O0

2 0.73818330-08 -0.32267020-15

3 0.1828431D-I8 O.O000000D+O0

4 0.1828431D-18 O.O000000D+O0
5 O.7381833D-OB -0.3226702D-15

6 O.1828431D-18 O.O000000D+O0

EPSO(1) - EPSO(6)

0.4539266D-03

O0000000D_O0

-0. 1678741D-O4

O.O000000D+O0

-0.5878301D-04

-0.6708493D-11

KAPPA(1) - KAPPA(6)

-0.295t981D-17

O.O000000D÷O0

0.1070011D-18

O.O000000D+O0

0.1293403D-1B

0.4801262D-25

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. E(X) E(Y) E(Z) E(XY)

1 0.45393D-03 -0.16787D-04 -0.58783D-04 -0.67085D-ll

2 0.45393D-03 -0.16787D-04 -0.58783D-04 -0.67085D-11

3 0.45393D-03 -0.16787D-04 -0.58783D-04 -0.67085D-11

4 0,45393D-03 -0.167870-04 -0.587830-04 -0.67085D-1i
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5 0.45393D-03 -0.t6787D-04 -0.58783D-04 -0 67085D-11
6 0.45393D-03 -0.16787D-04 -0.58783D-04 -0.670850-11

THE STRESSES AT THE
PLY NO. S(1)

OUTER FIBER ARE

S(2) S(3)

1 9177.45 169.52 101.91

2 -t69.52 723.54 -101.91

3 9177.45 169.52 101.91

4 9177.45 169.52 101.91

5 -169.52 ?23.54 -101.91

6 9t77.45 169.52 101.91

CYCLE NUMBER 0.9990000E+03

S(6)

0 O0

O. O0

0.00

O. O0

0.00

0.00

PLY NO.

1

2

3

4

5

6

ALPHAM2

0.361045tD-18
o.14574560-o?
0.36t0451D-18

0.36104510-18

0.i457456D-07

0.36104510-18

EPSO(1) - EPSO(6)

0.45392718-03
o.oooooooo+oo

KAPPA(l) - KAPPA(6)

-0.2952008D-17

0.00000000+00

ALPHAMB

O.O000000D+O0

-0.6370742D-15

O.O000000D+O0

O.O000000D+O0

-0.6370742D-15

O.O000000D+O0

-0.1678728D-04 -0.5878309D-04

O.O000000D+O0 -0.67084i80-ii •

0.1069916D-18

O.O000000D+O0

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. E(X) E(Y)

1 0.45393D-03 -0.16787D-04

2 0.45393D-03 -0.167870-04

3 0.45393D-03 -0.16787D-04

4 0.453930-03 -0.16787D-04

5 0 45393D-03 -0. t6787D-04

6 0.453930-03 -0. I6787D-04

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. S(I) S(2}

1 9177.46 169.52
2 -169.52 723.53

3 9177.46 t69.52

4 9177.46 169.52

5 -169.52 ?23.53

6 9177.46 t69.52

CYCLE NUMBER 0.1499000E+04

E(Z)

O. 1293454D-18

0.4800801D-25

-0.58783D-04

-0.58783D-04

-0.58783D-04

-0.58783D-04

-0,58783D-04
-0.$87830-04

E(XY)

-0.67084D-11

-0.670840-11

-0.67084D-11

-0.670840-11

-0.67084D-11

-0.67084D-11

S(3) S(6)

101 .91 0.00

-101.91 0.00
101.91 0.00

t01.91 0.00

-t01.91 0.00

t01,91 0.00

PLY NO.

1

2

3

4

5

6

EPSO(

ALPHAM2

0.5392533D-18

0.2t76582D-07
0.53925330-18

0,5392533D-18
0.2176582D-07

0.53925330-18

1) EPSO(6)

0.4539277D-03

O.O000000D÷O0

KAPPA(1) - KAPPA(6)

-0.29520280-17

O.O000000D÷O0

ALPHAM8

O.O000000D+O0
-0.95t4142D-15

O.O000000D+O0

O. 0000000_ D +00

-0.9514142D- 15

O. O000000D +00

-0.1678716D-04

O.O000000D+O0

0.1069888D-18

O.O000000D+O0

-0.5878318D-04

-0.6708343D-11

THE STRAINS AT THE OUTER FIBER ARE

PLY NO, E(X) E(Y)

0.1293488D-18

0.4800658D-25

E(Z) E(XY)

t 0.453930-03 -O.16787D-04 -0.58783D-04 -0.67083D-11

2 0.453930-03 -0.161870-04 -0.587830-04 -0.670830-11

3 0.45393D-03 -0,t67870-04 -0.587830-04 -0.670830-11

4 0.453930-03 -0.16787D-04 -0.587830-04 -0.670830-11
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5 0.45393D-03 -0. 16787D-04 -0.58783D-04 -0.670820-11

6 0.453930-03 -0. 16787D-04 -0.58783D-04 -0.67082D-11

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. S(1) S(2) S(3) S(6)

1 9177.49 169.52 101.91 0.00

2 -169.52 723.50 -101.91 0.00

3 9177.49 169.52 101.91 0,00

4 9177.49 169.52 101.91 0.00

5 -169.52 723.50 -101.91 0.00

6 9177.49 169.52 101.91 0.00

CYCLE NUMBER 0.2999000E+04

PLY NO. ALPHAM2 ALPHAM8

1 0.1073915D-17 O.O000000D+O0

2 0.4333084D-07 -0,18940510-14

3 0.1073915D-17 O.O000000D+O0

4 0.1073915D-17 O.O000000D+O0
5 0.4333084D-07 -0. 189405fD-14

6 0.1073915D-17 O.O000000D+O0

EPSO(1) - EPSO(6)

0.45392920-03

O.O000000D+O0
-O. f678679D-04

O.O000000D+O0
-0.5878344D-04

-0.6708118D-11

KAPPA(1) KAPPA(6)

-0,2952133D-17

O.O000000D+O0
0, i0695060-18

O.O000000D+O0
0.1293694D-18
0.4798803D-25

THE STRAINS AT THE OUTER FIBER ARE

PLY NO, E(X) £(Y) E(Z) E(XY)

I 0.45393D-03 -0. t6787D-04 -0.58783D-04 -0.670BID-11

2 0.45393D-03 -0.16787D-04 -0.58783D-04 -0.6708iD-11
3 0.45393D-03 -0. 16787D-04 -0.587830-04 -0.670810-11

4 0.45393D-03 -0.16787D-04 -0.58783D-04 -O.670BID-11

5 0.45393D-03 -0.16787D-04 -0.58783D-04 -O,670BiD-ll

6 0.45393D-03 -0.16787D-04 -0.SB783D-04 -O.670BfD-ll

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. S(1) S(2) S(3) S(6)

1 9177.50 169,52 101.91

2 -169.52 723.49 -101.91

3 9177.50 169.52 101.91

4 9177,50 169.52 101,91

5 -169.52 723,49 -101.91

6 9177.50 169.52 101.91

O. O0

O. O0

O. O0

O. O0

0. O0

0 • O0

CYCLE NUMBER 0.3499000E+04

PLY NO. ALPHAM2 ALPHAM8

1 0.1252148D-17 O.O000000D+O0

2 0.5051625D-07 -0.220B136D-14

3 0. t252148D-17 O.O000000D+O0

4 0.1252148D-17 O.O000000D÷O0

5 0.5051625D-07 -0.2208136D-14

6 0.t252148D-17 O,O000000D÷O0

£PS0(I) - EPSO(6)

0.4539298D-03

O.O000000D÷O0
-0.1678667D-04

O.O000000D÷O0

-0.5878353D-04

-0.6708043D-11

KAPPA(1) - KAPPA(6)

-0.2952218D-17

O.O000000D+O0

0.1069260D-18

O.O000000D÷O0

0. t293855D-18

0.4797596D-25

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. E(X) E(Y) E(Z) E(XY)

1 0.45393D-03 -0.16787D-04 -0.58784D-04 -0.67080D-11

2 0.453930-03 -0.16787D-04 -0.587840-04 -0.67080D-11

3 0.45393D-03 -0.16787D-04 -0.58784D-04 -0.67080D-11

4 0.45393D-03 -0 16787D-04 -0.58784D-04 -0.67080D-1t
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5 0.453930-03 -0.16787D-04 -0.58784b-04 -0.67080D-11

6 0.453930-03 -0. f67870-04 -0.587840-04 -0.67080D-11

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. S(1) S(2) S(3) S(6)

1 9177.51 169.53 101

2 -169.53 723.48 _101

3 9177.51 169.53 101

4 9i77.51 169.53 101

5 -169.53 723.48 -101

6 9177.51 169,53 101

91 0.00
91 0.00

91 0.00

91 0,00

91 0.00

9! 0.00

CYCLE NUMBER 0.3999000E+04

PLY NO, ALPHAM2 ALPHAM8

1 0.1430387D-17 O,O000000D+O0

2 0.5770021D-07 -0.2522156D-t4

3 0.14303870-t7 O,O000000D+O0

4 0.1430387D-17 O.O000000D+O0
5 0,577002fD-07 -0.25221560-I4

6 0.1430387D-17 0.00000000_00

EPSO(1) - EPSO(6)

0,4539303D-03

0.00000000+00
-0_i678655D-04

O.O000000D+O0
:0._EST83620-04

-0.6707968D-11

KAPPA(1) - KAPPA(6)

-0.2952227D-17

O.O000000D+O0

0.1069154D-18

O.O000000D+O0

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. E(X) E(Y) E(Z)

O. 1293880D-18

0.4797095D-25

E(XY)

1 0.45393D-03 -0,16787D-04 -0.58784D-04 -0.670800-11

2 0.45393D-03 -0. 16787D-04 -0.587840-04 -0.670B00-11

3 0.453930-03 -0.16787D-04 -0.58784D-04 -0,670800-11

4 0.45393D-03 -0,16787D-04 -0.587840-04 -0.670800-11

5 0.45393D-03 -0.16787D-04 -0.58?840-04 -0.670800-11

6 0.453930-03 -0.16787D-04 -0.587840-04 -0.67080D-11

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. S(1) S(2) S(3) S(6)

I 9177,52 169.53 101,91 0,00
2 -169.53 723,47 -101,9t 0.00

3 9177,52 t69.53 10t,91 0.00
4 9177.52 169.53 101.91 0.00

5 -169.$3 723.47 -101.91 0.00

6 9177.52 169.53 101.91 0.00

CYCLE NUMBER 0.4499000E+04

PLY NO, ALPHAM2 ALPHAM8

1 0.1608632D-17 O.O000000D+O0
2 0.6488271D-07 -0.2836113D-14

3 O. 1608632D-17 0.00000000+00

4 0,1608632D-17 O.O000000D+O0

5 0.6488271D-07 -0.28361t3D-14

6 0,1608632D-17 O.O000000D+O0

EPSO(1) - EPSO(6)

0.4539308D-03 -0. 1678642D-04

O.O000000D+O0 0.00000000+00
-O.SB78370D-04

-0.6707893D-11

KAPPA( 1) - KAPPA(6)

-0.2952305D-17

O.O000000D+O0

0. t069002D-18

0.0000000D+00
0,12940200-18

0,4796336D-25

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. £(X) E(Y) E(Z) E(XY)

1 0.45393D-03 _0.16786D-04 -0.58784D-04 -0.67079D-11
2 0.453930-03 -0.167860-04 -0,58784D-04 -0.67079D-11

3 0.45393D-03 -0.16786D-04 -0.58784D-04 -0.67079D-11

4 0.45393D-03 -0.16786D-04 -0.58784D-04 -0.67079D-11
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5 0.453930-03 -0. 1678GD-04 _0.587840-04 -0.670790-11

6 0,453930-03 -O.tG?BGD-04 -0.587840'04 -0.67079D-11

THE STRESSES AT THE OUTER FIBER ARE

PLY NO, S(I) S(2) S(3) S(6)

1 9177.53 169.53 10t.91 0.00

2 -169.53 723.46 -101.91 0.00

3 9177.53 169.53 101.91 0.00

4 9177.53 169.53 101.91 0.00

5 -169.53 ?23.46 -101.91 0.00

6 9177,53 169.53 101.91 0.00

CYCLE NUMBER 0.4999000E+04

PLY NO. ALPHAM2 ALPHAM8

f 0.t7868830-f7 O.O0000OO0+O0

2 0.7206375D-07 -0.31500070-14
3 0.1786883D-17 O.O000000D+O0

4 0.17868830-17 0.00000000+00

5 0.72063750-07 -0.31500070-14

6 0.1786883D-17 O.O000000D+O0

EPSO(1) - EPSO(6)

0.4539313D-03

O.O000000D+O0
-0.16786300-04

O.O000000D+O0

-0.58783790-04

-0.6707818D-11

KAPPA(i) KAPPA(6)

-0,29524280-17

O,O000000D+O0

0.10687080-18

O.O000000D+O0

0.12942470-18
0.47948830-25

THE STRAINS AT THE OUTER FIBER ARE

PLY NO, E(X) E(Y) E(Z) E(XY)

1 0 45393D-03 -0.16786D-04 -0.58784D-04 -0.670780-11

2 0.45393D-03 _0,167860-04 -0.58784D-04 -0.67078D-11

3 0.453930-03 -0.16786D-04 -0.587840-04 -0.670780-1t

4 0.453930-03 -0.167860-04 L0.587840-04 -0.67078D-11

5 0.45393D-03 -0.16786D-04 -0,5B784D-04 -0.67078D-11

6 0 453930-03 -0.16786D-04 -0.5B784D-04 -0.67078D-il

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. S(I) S(2) S(3) S(6)

1 9177.55 169

2 -169.53 723

3 9177.55 169
4 9177.55 169

5 -169.53 723

6 9177.55 169

53

44

53

53

44
53

101.91

-101.91

101.91

101.91

-101.91

101.91

O. O0

O, O0

O, O0
0.00

0. O0

O. O0

CYCLE NUMBER 0.5499000E+04

PLY NO. ALPHAM2 ALPHAM8

1 0.131385GD-11 O.O000000D+O0

2 0,50B6256D-03 -0.22232730-10

3 0.1313856D-11 O.O000000D+O0

4 0.13138560-11 O.O000000D+O0

5 0.50862560-03 -0,22232730-10

6 0.13138560-11 O.O000000D+O0

EPSO(1) - EPSO(6)

0.13989480-02

O.O000000D+O0

-0.4t65405D-04

O.O000000O+O0
-0.1825181D-03

-0.14B1940D-t0

KAPPA(I) - KAPPA(G)

-0.99104210-17

0.00000000+00
0.5265107D-19

0.00000000+00

0.5767951D-18

0. f2287630-25

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. E(X) E(Y) E(Z) E(XY)

1 0.13989D-02 -0.416540-04 -0.182520-03 -0.148190-10

2 0.13989D-02 -0.41654D-04 -0.18252D-03 -0.14819D-10

3 0.139890-02 -0.41654D-04 -0.18252D-03 -0.14819B-10

4 0.13989D-02 -0.416540-04 -0.18252D-03 -0.148190-t0
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5 0,139890-02 -0.41654D-04 -0. 18252D-03 -0. 14819D-I0

6 0.13989D-02 -0.41654D-04 -0.18252D-03 -0.14819D-I0

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. S(I) S(2)

1 28287.59 538.68

2 -538.68 14t5.38

3 28287.59 538.68

4 2828?.59 538.68
5 -53B.68 14t5,38

6 2828?.59 538.68

CYCLE NUMBER 0.5999000E+04

PLY NO, ALPHAM2

1 0.2852440D-11

2 O.5588768D-03

3 0.2852440D-11

4 0.2852440D-11

5 0.5588768D-03

6 0.28524400-11

EPSO(1) - EPSO(G)

0.14026200-02

O.O000000D+O0

KAPPA(1) - KAPPA(G)

311

-311

311

311

-311

311

S(3)

89

89

89

89

89

89

ALPHAM8

0.00000000+00

-0.2442928D-10

O.O000000O+O0

0.00000000÷00

-0.2442928D-10

O.O000000D+O0

-0.4079366D-04

O.O000000D+O0

-0,95908690-17

0.00000000+00

0.5540902D-t9

O.O000000D+O0

THE STRAINS AT THE OUTER FIBER ARE

PLY E(Y)

THE

PLY

NO. E(x)

t .0.14026D-02

2 0.14026D-02

3 0.14026D-02

4 0.1402GD-02

5 0.1402GD-02
6 0.t4026D-02

STRESSES AT THE

NO, S(I)

1 28362.21

2 -541,66

3 28362.21

4 28362.21

5 -54t,66
6 28362.21

-0 40794D-04

-0 40794D-04
-0 40794D-04

-0 40794D-04

-0 40794D-04

OUTER FIBER ARE

S(2)

S(6)

O, O0

0.00

0.00

0.00

O. O0

O. O0

-0,1831276D-03

-0.1429515D-10

0.524583GD-18

0.1538825D-25

E(Z) E(XY)

-0.18313D-03 -0.14295D-10

-01183i3D-03 -0_142_0-10

-0.18313D-03 -0.:142§5D-10

-0.18313D-03 -0.14295D-10

-0.183130-03 -0. i42950-10

-0.18313D-03 -0.142950-10

S(3) S(6)

541.66 312.50 0.00
1340.76 -312.50 0.00

541.66 312.50 0.(30

541.66 312.50 0.00

t340.76 -312.50 0.00

541.66 312.50 0.00

CYCLE NUMBER O.G499000E+04

PLY NO. ALPHAM2

1 0.4479322D-11

2 0.5870540D-03

3 0.4479322D-11

4 0.4479322D-11

5 0,5870540D-03

6 0.4479322D-11

EPSO(1) - EPSO(6)

0,1404679D-02 -0.4031122D-04

O.O000000D+O0 O.O000000O+O0

KAPPA(1) - KAPPA(G)

-0.9763569D-17 O.1096710D-18

0.00000000+00 0.00000000*00

THE STRAINS AT THE OUTER FIBER ARE
PLY NO. E(X) E(Y)

1 0.14047D-02 -0.403t1D-04

2 0.14047D-02 -0.40311D-04

3 0. t4047D-02 -0.40311D-04

4 0.14047D-02 -0.40311D-04

ALPHAM8

O.O000000D+O0

-O.25GGO94D-IO

O.O000000D+O0

O.O000000D+O0

-O,25GGO94D-lO

O.O000000D+O0

E(Z)

-0. t8347D-03

-0.18347D-03

-0.18347D-03

-0.18347D-03

-O.1834694D-03:

-0.t400119D-10

0.5457380D-18

0.4008539D-25

E(XY)

-0. t4001D-10

-0. 14001D- 10

-0. t4001D- 10

-0. 14001D-10
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5 0.140470-02 -0.403110-04 -0:1_83470-03 -0.140010-10
6 0.14047D-02 -0.40311D-04 -0.183470-03 -0.14001D-10

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. $(I) S(2)

I 28404

2 -543

3 28404

28404

-543

28404

4

5

6

CYCLE NUMBER

PLY NO.

1

2

3

4

5

6

EPSO(I) - EPSO(6)

0.14061020-02

O.O000000D+O0

KAPPA(l) KAPPA(6)

-0.10006850-i6

O.O000000D+O0

5(3) S(6)

05 543.33 312.84 0.00

33 1298.92 -312.84 0.00

05 543.33 312.84 0.00

05 543.33 312.84 0.00

33 i298.92 -312.84 0.00

05 543.33 312,84 0.00

0.6999000E+04

ALPHAM8

O.OOOOOOOO+O0
-0. 265_ _67o- 1o

o. odoooooD +oo
O.O00-O000D+O0

-0.2651167D-10

O.O000000D+O0

-0.3997799D-04

0.00000000+00

0.1477874D-18

O.O000000D+O0

ALPHAM2

0.6164068D-11

0.6065163D-03

0,6164068D-11

0.6164068D-11

0.6065163D-03

0.6164068D-11

E(Z)

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. E(X) E(Y)

-0.1837055D-03

-0.1379814D-10

0.5800803D-18

0,5676971D-25

E(XY)

1 0, t4061D-02 -0.39978D-04 -0,18371D-03 -0.13798D-10

2 0.14061D-02 -0.39978D-04 -0.18371D-03 -0.137980-10
3 0.14061D-02 -0.39978D-04 -0_183710-03 -0.13798D-10
4 O. 14061D-02 -0,39978D-04 -0.18371D-03 -0.13798D-10

5 0.14061D-02 -0.39978D-04 -0, t8371D-03 -0,13798D-10
6 0.14061D-02 -0.39978D-04 -0.18371D-03 -0,13798D-10

THE STRESSES AT THE

PLY NO. S(1)

1 28432.95

2 -544.48
3 28432.95

4 28432.95

5 -544.48

6 28432,95

OUTER FIBER ARE

S(2) 5(3)

544.48 313.08

1270.02 -313.08

544.48 313.08

544.48 313.08

1270.02 -313,08

544.48 313,08

CYCLE NUMBER 0.7499000E+04

ALPHAM8

O.QOOOOOOO+OO
-0,2715858D-10

O.O000000D+O0

O.OOOOOOOD÷OO
-o.2z158589-1o

O.O000000D+O0

ALPHAM2

0.7892060D-11

0.6213159D-03

0.78920600-11

0.7892060D-11
0.6213t59D-03

0.78920600-11

PLY NO.

1

2

3

4
5

6

EPSO(1) - EPSO(6)

KAPPA(

0,1407183D-02
O,O000000O+O0

1) - KAPPA(6)

-0.9869425D-17

O.O000000D÷O0

5(6)

O. O0

0.00

O. O0

O. O0

O. O0

O. O0

-0.3972460D-04 -0.1838850D-03

0.0000(3000÷00 -0,1364374D-10

0.9974921D-19

O.O000000D+O0

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. E(X) E(Y)

0.5631240D-18

0.3486876D-25

E(Z) E(XY)

1 0.14072D-02 -0.39725D-04 -0.18388D-03 -0.13644D-10

2 0,14072D-02 -0.39725D-04 -0.18388D-03 -0.t3644D-t0
3 0,140720-02 -0,39725D-04 -0.18388D-03 -0.13644D-10

4 0.140720-02 -0.397250-04 -0.183880-03 -0.13644D-10
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5 0.14072D-02 -0,39725D-04 -0.18388D-03 -0.13644D-10

6 0.t40720-02 -0.397250-04 -0.18388D-03 -0.13644D-t0

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. S(1) S(2) S(3) S(6)

1 28454

2 -545

3 28454

4 28454

5 -545

6 28454

92 545.35 3t3.26 0.00

35 1248.05 -3t3.26 0,00

92 545.35 313.26 0.00

92 545,35 313.26 0.00

35 1248,05 -313.26 0.00
g2 545.35 313.26 0.00

CYCLE NUMBER 0.7999000E÷04

PLY NO,
1

2

3

4

5

6

ALPHAM2

0.96546310-11

0.63321890-03

o,g654631D-11

0.96546310-11

0.6332189D-03

0.965463t0-11

ALPHAM8

O.O000000D+O0

-0.2767888D-10

0.00000000+00

O.O000000D+O0

-0.2767888D-I0

O.O000000D+O0

EPSO(1

KAPPA(

) EPSO(6)

0.14080530-02 -0.3952080D-04 -0.1840293D-03

O.O000000D+O0 O.O000000D+O0 -0.1351956D-10

1) - KAPPA(6)

-0,9686882D-17 0.6966505D-19

o.oooooo00÷oo o.o0o00000÷oo

6.53765260-1B
0.2tG81400-25

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. E(X) E(Y)

0 14081D-02

0 140810-02

0 140810-02

0 140810-02

0 1408tO-02

0 140810_02

-0.395210-04

-0.39521D-04

-0.395210-04
-0.395210-04

-O.39521D-04

-0.39521D-04

E(Z)

-0,18403D-03

-0,18403D-03
-0.18403D-03

-0.18403D-03

-0.184030-03

-0.184030-03

E(XY)

-0.13520D-10

-0.13520D-10
-0.13520D-t0

-0.13520D-10

-0.135200-10

-0.13520D-10

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. S(I) S(2) S(3) S(6)

1 28472.60 546.06 313.40

2 -546.06 1230.37 -313.40

3 28472,60 546,06 313.40

4 28472.60 546.06 313.40

5 -546.06 1230.37 -313.40

6 28472.60 546.06 313.40

0.00

O. O0

O. O0

O. O0
0. O0

O. O0

CYCLE NUMBER 0.8499000E+04

PLY NO. ALPHAM2 ALPHAM8
1 0.1144603D-10 O.O000000D+O0

2 0.643t517D-03 -0.281i306D-10

3 0.1i44603D-10 O.O000000D+O0

4 0.1i44603D-10 O.O000000D+O0

5 0.643t517D-03 -0.2BI1306D-lO

6 0.1144603D-10 O.O000000D+O0

EPSO(I ) EPSO(6)

0,14087790-02

O.O000000O+O0

-0.39350730-04

O.O000000D+O0

-0.1841498Do03

-0. t341594D-10

KAPPA( 1) - KAPPA(6)

-0.9947443D-17

O.O000000D+O0

0.82180320-t9

O.O000000D÷O0

0.5771187D-18
0.261BO52D-25

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. E(X) E(Y) E(Z) E(XY)

1 0.14088D-02 -0.39351D-04 -0,18415D-03 -0.t34t60-10
2 0.14088D-02 -0.393510-04 -0.18415D-03 -01134i6b-10

3 0.14088D-02 -0.39351D-04 -0.18415D-03 -0.13416D-10
4 0.14088D-02 -0.39351D-04 -0.184t5D-03 -0.13416D-10
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5 O. 14088D-02 -0.39351D-04 -0. t84t5D-03 -0,13416D-10

6 O. 14088D-02 -0.39351D-04 -0.18415D-03 -0.13416D-10

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. S(I) S(2) S(3) S(6)

1 28487.35 546.65 313

2 -546.65 12t5.62 -313

3 2848?.35 546.65 313

4 28487.35 546.65 313
5 -546.65 1215.62 -313

6 28487.35 546.65 313

52 0.00

52 0.00

52 0.00

52 0.00

52 0.00
52 0.00

CYCLE NUMBER 0.8999000E+04

PLY NO. ALPHAM2 ALPHAM8

1 0. t326214D-10 O.O000000D+O0

2 0,6516601D-03 -0.2B48497D-10

3 0. t326214D-10 O.O000000D÷O0

4 0.1326214D-10 O.O000000D÷O0

5 0.6516601D-03 -0.2848497D-i0

6 0.1326214D-10 O.O000000D+O0

EPSO(1) - EPSO(6)

0.1409401D-02

O.O000000D+O0

-0.3920505D-04

O.O000000D+O0

-0. 1842530D-03

-0.1332717D-10

KAPPA(1) - KAPPA(6)

-0.9824341D-17

O.O000000D+O0

0.7020157D-19

O.O000000D+O0

0.5586203D-18

0.2120855D-25

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. E(X) E(Y) E(Z) E(XY)

1 O. 14094D-02 -0.39205D-04
2 O, 14094D-02 -0.392050-04

3 0.14094D-02 -0.39205D-04

4 0,14094D-02 -0.39205D-04

5 0.14094D-02 -0.39205D-04

6 O, 14094D~02 -0.39205D-04

-0 18425D-03
-0 18425D-03

-0 18425D-03

-0 18425D-03

-0 18425D-03

-0 18425D-03

-0, 13327D-10
-0.13327D-10

-0.13327D-10
-0.13327D-10

-0.13327D-10

-0,13327D-10

THE STRESSES AT THE OUTER FIBER ARE

PLY NO, S(1) S(2) S(3) S(6)

1 28499.98 , 547.15 313.62
2 -547.15 1202.99 -313.62

3 28499.98 547.15 313.62
4 28499.98 547.15 313.62

5 -547.t5 1202.99 -313.62
6 28499,98 547.15 313.62

0.00

0,00

0.00

0. O0

O. O0
O. O0

CYCLE NUMBER 0.9499000E+04

PLY NO. ALPHAM2 ALPHAM8

1 0.1509990D-10 O.O000000D+O0

2 0,6590917D-03 -0.2880982D-10

3 0.1509990D-10 O,O000000D+O0

4 0.15099900-10 O.O000000D+O0

5 0.6590917D-03 -0.2880982D-10
6 0,1509990D-10 O.O000000D+O0

EPSO(1) EPSO(6)

0.1409944D-02

O,O000000D+O0

-0.3907781D-04

O.O000000D+O0

-0.1843432D-03

-0.1324964D-10

KAPPA(t) - KAPPA(6)

-0 9833615D-17

O.O000000D+O0

0.78861930-19

O.O000000D+O0

0.5590246D-18

0.2525333D-25

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. E(X) E(Y) E(Z) E(XY)

1 0.14099D-02 -0.39078D-04 -0.18434D-03 -0.13250D-10

2 0.14099D-02 -0.39078D-04 -0. iB434D-03 -0.13250D-10

3 0.14099D-02 -0.390780-04 -0.18434D-03 -0.13250D-10

4 0.14099D-02 -0.39078D-04 -0,18434D-03 -0.132500-t0
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5 0.14099D-02 -0.39078D-04 -0.18434D-03 -0.13250D-10

6 0,140990-02 -0,39078D-04 -0.18434D-03 -0 t3250D-10

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. S(I) S(2) S(3) S(6)

1 28511.02 547.59 313

2 -547.59 1t91.95 -3t3

3 28511.02 547.59 313

4 28511.02 547.59 313

5 -54?.59 1t91,95 -313

6 28511,02 547.59 313

71 0.00

7t 0.00

71 0.00

71 0.00
71 0.00

71 O. O0

CYCLE NUMBER 0.9999000E+04

PLY NO. ALPHAM2 ALPHAM8 -
1 0.1695690D-10 O.O000000D+O0

2 0.665G820D-03 -0.29097890-10

3 0.1695690D-IO O.O000000D+O0

4 0.1695690D-10 O.O000000D+O0

5 0.6656820D-03 -0 2909789D-10

6 0,1695690D-10 O.O000000D+O0

EPSO(1) - EPSO(6)

0 14t0425D-02

0 O000000D+O0

-0.3896497D-04

O.O000000D+O0

-0.18442310-03

-0.1318089D-10

KAPPA(1) - KAPPA(6)

-0 1006521D-16

O.O000000D+O0

-0.1896032D-19

O.O000000D+O0

0.6065785D-18

-0.22156t2D-25

THE STRAINS AT THE OUTER FIBER ARE

PLY NO. E(X) E(Y) E(Z) E(XY)

1 0.141040-02

2 0.14104D-02

3 0.14104D-02

4 0.14t04D-02

5 0.141040-02

6 0.14104D-02

-0 38965D-04

-0 38965D-04

-0 38965D-04

-0 38965D-04

-0 38965D-04
-0 38965D-04

-0.18442D-03 -0.1
-0,184420-03 -0.1

-0.18442D-03 -0.1

-0.18442D-03 -0.1
-0.18442D-03 -0.1

-0.18442D-03 -0.1

3181D-10

3181D-10

3181D-10

3181D-10

3181D-10

3181D-10

THE STRESSES AT THE OUTER FIBER ARE

PLY NO. S(I) S(2) S(3) S(6)

1 28520.81 54?.98

2 -547.98 1182.17

3 28520.81 547.98

4 28520,81 547.98

5 -547.98 1182.17

6 28520,81 547.98

3t3.79
-313.79

313.79

3t3.79

-313.79

313.79

0.00
O. O0

0.00

O. O0

0.00

0.00
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